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A reduced basis technique and a computational procedure are presented for the nonlinear free

vibrations of composite panels. The computational procedure can be conveniently divided into two

distinct steps. The first step involves the generation of various-order perturbation vectors using

Linstedt-Poincar6 perturbation technique. The second step consists of using the perturbation vectors

as basis vectors, computing the amplitudes of these vectors, and the nonlinear frequency of vibration,

via a direct variational procedure. The analytical formulation is based on a form of the geometrically

nonlinear shallow shell theory with the effects of transverse shear deformation, rotatory inertia and

anisotropic material behavior included. The panel is discretized by using mixed finite element models

with the fundamental unknowns consisting of both the nodal displacements and the stress-resultant

parameters of the panel. The potential of the proposed technique is discussed and its effectiveness is

demonstrated by means of numerical examples.

1. Introduction

The physical understanding and the numerical simulation of the nonlinear vibrational

response of laminated anisotropic plates has recently become the focus of intense efforts. This

is because of the expanded use of composite construction in aerospace, automotive, shipbuild-

ing and other industries and the need to establish practical limits of their dynamic load-

carrying capabilities.

Experimental studies have been performed on laminated anisotropic panels by Mayberry
and Bert [1 I. Analytical, numerical and hybrid analytical-numerical techniques have been
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developed for studying the nonlinear vibrations of anisotropic and laminated plates. Review of

some of the techniques are contained in survey papers [2-4] and in two monographs [5, 6]. In

most of the analytical techniques reported in the literature, the spatial discretization is done by

either Galerkin or Ritz methods, and the temporal integration is done by using either the
method of harmonic balance or a perturbation technique [7-17]. Most of the numerical

techniques reported are based on using finite elements for the spatial discretization, and the

temporal integration by assuming harmonic variation of the response with time [18-24]. In

[25, 26] the nonlinear vibration problem was approximated by a linearized vibration problem

of a prestressed panel. The geometric stiffness matrix corresponds to an average configuration
of the panel. In the hybrid numerical analytical techniques, either the spatial discretization is

done by using Galerkin's method and the temporal integration performed by direct numerical

integration technique; or the spatial discretization is done by finite elements and the method

of harmonic balance is used, in conjunction with a perturbation technique, to determine the
nonlinear frequency of vibration (see [27-31]). The mathematical models used in the cited

references range from simplified Von Karman type plate models (with in-plane deformation,
in-plane inertia and rotatory inertia terms neglected) to higher-order shear-deformation

models. Although the aforementioned studies have contributed significantly to understanding

the influence of nonlinearities on the vibrational response of anisotropic and laminated plates,
they were mostly based on perturbing a single vibration mode, and did not account for the

effect of coupling of the vibration modes on the nonlinear frequency. Only few reported
studies have accounted for the coupling effect (see, for example, [32, 33]).

The present study focuses on the nonlinear free vibrations of multilayered composites, and

accounts for the coupling between the vibration modes. Specifically, the objectives of the
present paper are

(1) to present a reduced-basis technique and a computational procedure for the nonlinear free
vibrations of composite panels; and

(2) to demonstrate the effectiveness of the proposed technique by means of numerical
examples.

To sharpen the focus of the study, only simply-connected rectangular panels are considered in

the numerical studies. However, the computational procedure is expected to be particularly

effective for panels with complex geometry. The reduced-basis technique presented herein is

an extension of the reduction techniques presented in [34-37] for solution of nonlinear static
and thermal problems.

The analytical formulation is based on a form of the geometrically nonlinear shallow shell

theory with the effects of transverse shear deformation, in-plane inertia, rotatory inertia and

anisotropic material behavior included. The panel is discretized by using mixed finite element

models with the fundamental unknowns consisting of both the nodal displacements and the
stress resultant parameters of the panel.

2. Basic idea of the reduced-basis technique

2.1. Governing semi-discrete finite element equations

The nonlinear free vibrational response of the panel can be described by the following
system of ordinary differential equations:
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0 0
[-IF] [Sl] {--} + [0

G(X)
[S}' 0 [M]a ta,+t G(H, X)} = 0, (1)

where {H} is the vector of stress-resultant parameters; {X} is the vector of nodal displace-

ments; [F] is the global flexibility matrix; [S] is the strain-displacement matrix; {G(X)} and
{G(H, X)} are vectors of nonlinear terms; superscript t denotes transposition; 0 refers to a

zero submatrix; and a dot (.) refers to derivative with respect to the time t.

The application of the reduced basis technique to the solution of eq. (1) can be convenient-

ly divided into two distinct steps: (1) generation of basis (or global approximation) vectors
using the Linstedt-Poincar6 perturbation technique; and (2) computation of the amplitudes of

the basis vectors and the nonlinear vibration frequency via a direct variational technique. The

procedure is described subsequently.

2.2. Generation of basis vectors

For the purpose of generating the basis vectors, a new independent variable r = tot is
introduced, where to is the nonlinear circular frequency. The following expansion is used for

= to2, in terms of a small parameter e:

a(e) = _] a(°e ' . (2)
i = 0

Only the even values of i (i = 0, 2, 4,...) are retained in the expansion. The vectors (H} and

{X} are also expanded in perturbation series of the form

X(t, e) =. X(r)J e . (3)

Each of the time-dependent perturbation vectors, {H(r)} (i) and {X0")} ¢i), are expanded in a
Fourier series in r as follows:

X(r) J = ,,=0 cos mtot. (4)

The equations used in generating the basis vectors are obtained by substituting the

expansions for {H}, {X} and to, eqs. (2)-(4), into (1); converting each term into the first
power of cosine functions; and setting the coefficients of like terms of e and rn to zero. This

leads to a recursive set of linear equations in {H} ¢i'ml and {X} ¢i'm) which, for individual

elements, can be written in the following compact form:

- [FI [SI,,,, ")
The explicit forms of the right-hand side vectors {R} (;'") and {Q}(;") for 1_<i_<4,

0 _<m _<4 are given in Appendix A and Table 2. Note that the linear free vibration problem
corresponds to i = m = 1. The nonzero vectors {H} (cm) and {X} (_'m),associated with different

combinations of i and m, are listed in Table 1. All of these vectors are associated with a single

vibration mode (i.e., a prescribed pair of eigenvalue and eigenvector).
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Table 1

Pairs of (i, m) for which the perturbation vectors are nonzero

Am 0 1 2 3 4 5 6

1 1,1

2 2,0 2,2

3 3,1 3,3

4 4,0 4,2 4,4

5 5,1 5,3 5,5

6 6,0 6,2 6,4 6,6

Table 2

i m R',"" Q,,/m,

2 0 L_a v_l_,_v_,.1) N H_"_Y _'_1
5 _ ,IJ,K,,_L )r "_XK r "'KI'J"'K "'3'

2 2

3 1 cl.l_ _:otNH x.(2X J Xx." + Xftl_X tz :') N tg/4_"tl_ "12''1+9/41:°_Y 1''l_+14_j''Jx "_2"21J" K KI'J'_''K _J _==K "=l' -- "'K "=J'
(2,2) (I,1)

+H K Xj. )+c,M,.,.X/"_1

3 3 N,j.xX_'.'_'X_Z. "_'1 _I tH_"_'_2.:_+ H_z.z'_ "_,J_)''KIV't''K "=1 "'K "'J'

4 0 M [j((l.i)_[t_.l) + i2.0_ t2._)l tv (H[llt_( "(3"11 H(3'I)J[ (IAI 4- 9/-/(2,°)Y (2,°) + "'K "'.'" ,'•"trx'_"J "'x Xj X K "'xr.,'.--x "-s' + HI2'2)F_2"2)l"'K "*J ..... K "'J'

__ l_y(2.2)y(2,2)%
2_tJ" _=K' /

N [y(l.l)y(3,1) + yI],l)y(3.3)
lJ'k"_,'=l ' "*K' "*J "'g'

(2,fl) (2,2)+2X r XK, )

NIj,K,(X_I,I'X_ _,'')+ 2-j, -h, ,

4 2

4 4

N tt4(H)x "(3') q- _4(3"1)Y (]'l) 4- H(I'I)Y (3'3)

+ U,3.3,y,_._, 9H,'-.,,,y,2.2, + 2H_?.Z,X¢f.o,) + 4c,M, rX'_. "''--r "'r +-"s" --_

N / jL/[I,il y(3,3 ) jL/(3,3)_(I ,I ) ].4( 2.2 ) y( 2.2 ) "%
KI'Jr\'aK "=Y' @ "=K "=1' _- °=K "*J' t

2.3. Computation of amplitudes of basis vectors and nonlinear frequency

The perturbation vectors {H(_-)} _) and {X(_-)} ") are now chosen as basis vectors and the

vectors {H} and {X} are expressed as linear combinations of these vectors as follows:

{H}= __l (m_=o{H}_"m'cosmtot) _b_ , (6)

where q_, are unknown parameters representing the amplitudes of the basis vectors, and r
equals the total number of basis vectors used.

The Bubnov-Galerkin technique is then used, in conjunction with the method of harmonic

balance, to approximate (1) by a reduced system of r nonlinear algebraic equations in q6

(i = 1 .... , r) and o_. The additional equation needed to solve the system is obtained by

prescribing either one of the displacement components (linear combination of _0g), or one of
the parameters q6. The form of the nonlinear algebraic equations in _0_and w is given in
Appendix B.
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2.4. Comments on the selection of the basis vectors and the reduced basis technique

The following two comments concerning the selection of basis vectors and the reduced basis

technique seem to be in order:
(1) The chosen set of basis vectors are linearly independent. Their generation using Linstedt-

Poincar6 perturbation technique requires the solution of a recursive set of linear algebraic

equations.
(2) Whereas in the perturbation technique all the perturbation vectors are associated with a

single mode, in the reduced-basis technique the basis vectors can be associated with more
than one mode, thereby incorporating the effects of coupling between the different
modes.

3. Numerical studies

To assess the effectiveness of the proposed reduced basis technique, a number of nonlinear

vibration problems of multilayered composite panels have been solved using this technique.
For each problem, the accuracy and convergence of the solutions obtained by the proposed

technique were compared with those obtained by the perturbation technique, as well as with

other numerical and approximate solutions, whenever available. Herein, the results are

presented for typical two-layer cross-ply and angle-ply square panels (see Fig. 1).

The panels were discretized by using mixed finite element models with bicubic interpolation
functions for each of the generalized displacements and stress resultants. The characteristics of

the finite element model are given in [38]. Because of symmetry only one-quarter of the

cross-ply panel, and one-half of the angle-ply panel, were analyzed and the appropriate

symmetry/antisymmetry conditions were applied (see [39]). A 4 × 4 grid was used for the

Material 1 Material 2

EL/E T 10.0 40.0

GLT/ET 0.333 0.5

GTT / E T 0.2667 0.4

VLT 0.22 0.25

h/L = 0.01

Boundary, conditions

Atx 1 =0, L

w=_2=0

At x2 = 0, L

w=_ t =0

Fig. 1. Panels used in the present study and sign convention for displacements and rotations.
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cross-ply panel, and a 4× 8 grid was used for the angle-ply panel. For both panels
approximate analytic solutions, based on the combined application of the Bubnov-Galerkin

and harmonic balance techniques were presented in [32]. Typical results are shown in Fig. 2

for the cross-ply panel and in Figs. 3 and 4 for the angle-ply panels, and are discussed
subsequently.

In Fig. 2 comparisons are made between the nonlinear frequencies and kinetic energies,
associated with the first symmetric/symmetric and first symmetric/antisymmetric modes,

obtained by the reduced basis technique and those obtained by the perturbation technique.

The frequencies obtained by the four-mode approximate analytical technique of [32] are also

shown. The in-plane inertia, rotatory inertia and transverse shear deformation are neglected in

[32]. However, the agreement between the frequencies reported in [32] and the corresponding

ones obtained by the reduced basis technique is reasonable. This is particularly true for the
first symmetric/symmetric mode. The rapid convergence of the solutions obtained by the

Fiber orientation 0 = [0/90]

Lowest symmetric/symmetric mode _] x2

....... Lowest symmetric/antisymmetric mode []

• Approximate analytid solution Basis
X

vectors

Frequency
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'" .06
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__ L i I I
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(a) Reduced basis technique
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1.4
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.8
0

___ .08

,06
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........,, X/(ETh3)
.02

__ I J J i

.75 150 2.25 3.00 0
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I _e 4

_5
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/i"

//"

/

.75 1.50 2.25 3.00

Wmax/h

Terms

_o 4
P

_o 6 ,,'F

..-_----os ,f'_.10 ,

/,/--.

j2' ';

.75 1.50 2.25 3.00

Wmax/h

(b) Perturbation technique

Fig. 2. Convergence of nonlinear frequencies and kinetic energies obtained by reduced basis and perturbation

techniques. Two-layer cross-ply square plate made of material 1 (see Fig. 1).
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Fig. 3. Convergence of nonlinear frequencies and kinetic energies obtained by reduced basis and perturbation

techniques. Two-layer angle-ply square plate made of material 2 (see Fig. 1).

reduced basis technique, for amplitudes up to three times the thickness of the plate,

w/h = 3.0, is demonstrated. The perturbation solutions diverge for w/h > 1.5.

In Fig. 3 comparisons are made between the nonlinear frequencies and kinetic energies,
associated with the fundamental vibration mode, obtained by the reduced basis and perturba-

tion technique and those of [32], for angle-ply composite panels with 0 = 30 ° and 45 °. As for

the cross-ply panel, the solutions obtained by the reduced-basis technique are in close

agreement with those of [32], and converge rapidly for amplitudes up to three times the

thickness of the plate. The perturbation solutions diverge for wc/h > 1.0.

In Fig. 4 normalized contour plots are presented for the displacements u l, u 2 and w
associated with the linear fundamental vibration mode, and the nonlinear mode at wc/h = 3.0.

As expected, the effect of nonlinearity on u, and u 2 is much more pronounced than that on w.
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ul/lulI,'r,a× _2/1_2I_a,:

rl/S_\,',I

(a) Fundamental vibration mode - linear
(lullmax/Iwlr.ax=lu21r.ax/Iwlmax=7.46× 10-3)

(b) Fundamental vibration mode - nonlinear, wc/h = 3.0
(lullmax/Iwlmax= lu21max/lwlrnax=3.2x 10-2)

Fig. 4. Normalized contour plots for the displacements associated with the fundamental linear and nonlinear

modes, for two-layer angle-ply square plate made of material 2, 0 = 45 ° (see Fig. 1). Spacing of contour lines is 0.2

and dashed lines refer to negative contours.

4. Potential of the reduced basis technique

The reduced basis technique has high potential for solution of nonlinear free vibration
problems of composite panels with complex geometry. The numerical studies conducted

clearly demonstrate the rapid convergence of the technique, well beyond the range of

applicability of the perturbation technique. In addition, the technique can be extended to the
evaluation of the sensitivity coefficients (derivatives of the nonlinear vibrational response with

respect to material, lamination and geometric parameters). The extension is highlighted in this
section.

The sensitivity coefficients are obtained by differentiating the governing finite element

equations, eq. (1), with respect to dr, where dt denotes typical material, lamination or
geometric parameter. The unknowns in the resulting linear equations,

0{.},
Odt

are approximated by the following linear combination of basis vectors:

Odt i:, ,,=,, cosmw, _, + ,,_=,, _ LXJ cosmw, _0, , (7)

where { xn}<i,m_ are the basis vectors used in approximating the response;

0 (i.,,)

are the sensitivity coefficients of the basis vectors; _i and O_ are the amplitudes of the basis

vectors for the sensitivity coefficients and the response, respectively. The sensitivity co-
efficients of the basis vectors,

Od I

are obtained by differentiating the recursive set of equations, eq. (5), with respect to d_.
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Equations (6) and (7) are used, in conjunction with the Bubnov-Galerkin technique and
the method of harmonic balance, to approximate the full system in the sensitivity coefficients,

0

by a reduced system of r linear algebraic equations in tp, (i = 1,... , r) and Oo_2/adt.

The additional equation needed to solve the system is obtained by differentiating the
constraint condition used in evaluating _bi and w (i.e., in generating the nonlinear vibrational

response) with respect to d_.

5. Concluding remarks

A reduced basis technique and a computational procedure are presented for the nonlinear

vibration analysis of composite panels. The technique is based on the successive use of regular
perturbation method and direct variational procedure. The computational procedure can be

conveniently divided into two distinct steps. In the first step, perturbation vectors are

generated using the Linstedt-Poincar6 perturbation method. In the second step, the perturba-
tion vectors are used as basis vectors. The amplitudes of these vectors and the nonlinear

frequency are computed using a direct variational procedure in conjunction with the method
of harmonic balance. The analytical formulation is based on a form of the geometrically

nonlinear shallow shell theory with the effects of transverse shear deformation, in-plane

inertia, rotatory inertia and anisotropic material behavior included. The panel is discretized by

using mixed finite element models with the fundamental unknowns consisting of both the
nodal displacements and the stress-resultant parameters of the panel. The effectiveness of the

reduced basis technique is demonstrated by means of numerical examples of cross-ply and

angle-ply composite panels. The frequencies obtained by the reduced basis technique were

shown to be close to the corresponding ones obtained by the approximate analytic technique

well beyond the range of applicability of the perturbation technique. The potential of the

reduced basis technique for evaluating the sensitivity coefficients of the nonlinear vibrational

response is discussed.
On the basis of the present study the following two observations can be made:

(1) The reduced basis technique can be thought of as either of the following: (a) generalized

perturbation method in which (i) perturbation expansions of the nodal displacements and
stress resultants contain free parameters rather than fixed coefficients and (ii) the

perturbation parameters need not be small; (b) an extended direct variational technique

with the coordinate functions generated by using a perturbation technique rather than

chosen a priori.
(2) The successive application of the perturbation method and the direct variational tech-

nique, which forms the basis of the proposed computational procedure, results in (a)

enhancing the effectiveness of the direct variational technique by removing (or reducing)
the arbitrariness in the selection of the approximation vectors, and (b) extending the

range of applicability of the regular perturbation method by removing the restriction of a

small perturbation parameter.
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Appendix A. Evaluation of perturbation vectors

For individual elements, the nonlinear terms G and (3 in (1) are expressed in the following
form (see [38]):

Gt = ½ NIJ,K,Xj,XK,, (A.I)

(31' = Nm v' H_X r . (A. 2)

In (A. 1) and (A.2) NH,_:, represent nonlinear contributions which consist of integrals, over the

element domain, of products of shape functions and their spatial derivatives (see [38]). The
uppercase Latin subscripts I, J, K range from 1 to the total number of stress-resultant

parameters in the element; I', J', K' range from 1 to the total number of nodal displacements

in the element; and a repeated index denotes summation over its full range. The perturbation

vectors are obtained by solving a recursive set of equations which, for individual elements, can
be written in the following compact form:

(SH,) t _ mZweMrr Xj, = - Q,,] . (A.3)

The explicit forms of the components of the right-hand sides, R_ and Qr, for each pair of
(i, m) (see (2)-(5)), are given in Table 2.

In Table 2 a repeated uppercase Latin index denotes summation over its full range and the
coefficient c I is given by

c, =- E (H_'.')R(3 ') +,,,"'I'Y(I")Q-_3'"))/(Mrj'X'I!")X_]")) , (A.4)
elements

with

O_3'l)=Nxt','(2H(K'')Y(2,°)' --s' +-"x"))r"/( 2 '(' )5d'( I' I)'*J' -'}- "'K/_'( 1 ,l )y(Z,2)..j, -]- H_'2)X_! 'l) ) , (A.5)

Q_3,1) = (_3,1) + ciMt,rX_l,1) (A.6)

Note that when m = 1, the left-hand side matrix is singular. In this case, the vector

{Hj/'"m'
xj,J

can be written as the sum of a particular solution plus a multiple of the eigenvector. For
example, for m = 1, i = 3, the vector

nj _(3,1)

is given by
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Xj.J = [Xj,J + (_ Xj. ' (A.7)

where the first term on the right-hand side of (A.7) refers to the particular solution with one

component fixed, and a is given by

e_=- Z M,,j.f((,_")X_',")/(M,v.X(,_'_)X_','1'). (A.8)
elements

Appendix B. Form of the nonlinear equations in _bi and w

The nonlinear algebraic equations in the amplitudes of the coordinate functions _b,, and the

frequency co, can be written in the following compact form:

- to M,j¢ = O, (B.1)

where the range of i, j, k is 1,..., r; and a repeated index in the same term denotes

summation over its full range. The arrays /_,j, f'#k and M_j are obtained by using (6) and (1);
applying the Bubnov-Galerkin method and the method of harmonic balance; and performing

the temporal integration.
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